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ABSTRACT

In accord with the literature data only the closed loop coexistence curves for the 2-

butanol/water system have been observed experimentally under the elevated pressures.

However, the shape of the liquid-liquid coexistence curve at atmospheric pressure could

be interpreted as the existence of the third critical consolute point. The thermodynamic

analysis of coexistence curves with any number of critical consolute points was fulfilled

for the system. The properties of three critical point coexistence curves reflecting the

interconnection between conjugate temperatures were applied to describe mutual solu-

bility evolution of the 2-butanol/water system with pressure. The position of an immis-

cibility gap with the third (upper) critical point at low temperatures was calculated for

the 2-butanol/water system on the basis of the experimental literature data. Pressure de-

pendencies of critical parameters (critical temperatures, critical concentrations) and gen-

eral parameters of interaction energy were discussed. The position of a hypercritical

point was compared with the literature data, and the positions of a critical double point

and critical triple point were estimated. A novel way to represent data on the universal

scale was proposed and demonstrated.
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INTRODUCTION

Some systems exhibit a multiply reentrant solubility [1]. Phase-separating sys-

tems with two critical points (CPs) have been studied experimentally: closed-loop co-

existence curves (CCs) [2-6] or two independent phase-separating domains [7], when

the temperature of the lower critical solution point (LCSP) is above the temperature of

the upper one (UCSP) have been observed.

Although a set of experimental data for the systems with three CPs is solely lim-

ited, it does straightforwardly confirm the existence of phase diagrams of this kind. The

most impressive results have been presented in the paper of Sorensen [8], where the

evolution of immiscibility gaps had been obtained in the 2-butanol/water system with

the varied concentration of the third component (tret-butanol). However, for a binary 2-

butanol/water mixture only the closed-loop coexistence curves have been observed ex-

perimentally. The data presented in [9] could be mentioned as a classical example of the

variations in the closed-loop CCs for the 2-butanol/water system with the pressure.

The dependence of the CC shape on pressure near CP has been investigated thoroughly

in [10] and the parameters of the critical double point (CDP) have been obtained: TCDP =

274.15 0K and pCDP = 10.07 MPa. However, in both papers the data on the low-

temperature CC with UCSP were missing.

There exist the data of Dolgolenko [11] (Fig.1) which show the aqueous solu-

tions of different fractions of 2-butanol have quite different phase diagrams at atmos-

pheric pressure, namely, the purer is 2-butanol, the larger is the gap of immiscibility

with one UCSP. Moreover, the shape of the phase-separation diagram for the purest 2-

butanol should be interpreted as the existence of three critical consolute points. On the
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one hand, the comparison with Sorensen data [8] shows that the largest immiscibility

gap with one UCSP (fraction C) corresponds to a decreased amount or even the absence

of tret-butanol. The first fractions of 2-butanol (fraction A) can be enriched with higher

alcohol yielding a closed-loop located above the unclosed immiscibility gap with UCSP.

On the other hand, the comparison with Moriyoshi et al. data [9] shows that at atmos-

pheric pressure both Dolgolenko [11] and Moriyoshi et al. [9] phase-separation dia-

grams for the purest 2-butanol agree very closely. This fact indicates the necessity of

existence of the third CP at low temperatures in the 2-butanol/water system. On in-

creasing pressure one can expect an appearance of a closed-loop CC which degenerates

into a hypercritical point (HCP), if two of CPs merge. The shape of CC at low pressure

indicates the system transition over CDP in the vicinity of 100 atm: the closed-loop and

the immiscibility gap with UCSP at low temperatures coincide in CDP.

The goal of the present work is to analyse a variety of the immiscibility phase

diagrams existing in literature for the 2-butanol/water system as a system with three

CPs, to formulate the conditions of continuous transition from one CP to the other, and

to illustrate new properties of the CCs with three CPs. In particular, we attempt to obtain

the data on solubility of the 2-butanol/water system (system with three CPs) in the low-

temperature region using the properties of conjugate temperatures.

GENERAL EQUATIONS AND PROPERTIES

There is an uncertainty in description of the critical state for the systems with

several CPs, i.e. when the system nears one of the critical points it recedes from the oth-

ers. The limitation of usage of a simple scaling equations for description CCs over a

broad interval of thermodynamic parameters variations does not allow one to consider a
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phase diagram with several CPs as a solution of a unique equation. On the other hand,

both microscopic [12] and phenomenological [13] approaches describe CCs with sev-

eral CPs only qualitatively because of the nonclassical behaviour of the system in the vi-

cinity of CPs. We have analysed the coexistence curves with any number of critical con-

solute points on the basis of the extended thermodynamic theory of regular mixing [14].

The asymmetry of CC is another difficulty in a unified description of the shape

of CC. The principles of CC symmetrization which we employ in this paper have been-

considered elsewhere [15,16]. In brief, the connection between the mole ratios of initial

components (X) and symmetric coordinates (Xs) is expressed by the formula:

)/()(X 00S XXXX c −−= (1)

The fitting parameters Xc and X0 are calculated by means of the least-mean square pro-

cedure using the properties of a symmetrized coexistence curve.

As we have already considered the issues of coexistence curve asymmetry, in

further description we deal with the symmetric phase diagrams.

The excess Gibbs free energy of mixing in the frame of the symmetric regular-

mixing model can be expressed as follows [17-19]: )(G 21e SSTH ∆+∆−∆= , where

)]1ln()1()ln([1 ssss xxxxRS −−+−=∆  is the configurational molar entropy of mixing,

Sss WxxS )1(2 −=∆  is the molar excess entropy of mixing, arising from changes in the

internal degrees of freedom upon mixing, Hss WxxH )1( −=∆  is the excess molar en-

thalpy of mixing.

Equation of CC (binodal) is determined under the condition 0/ =∂∂ se xG :
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and the boundary of metastable states (spinodal) is determined under the condition

0/ 22 =∂∂ se xG :

RTWx Gs /2XS = , (2b)

where SHG TWWW −=  is the general interaction energy parameter expressed in units of

free energy. Critical temperature is found from the extremum conditions coincided for

both curves, Eqs.(2). If the system under study has n CPs, the real positive roots of the

following equation ciSciHG RTWTWW 2)T (T, ci =−=  yield n critical temperatures Tci.

WG can be expressed in the universal form, assuming ∑
=

−=
n

i

i
SiS TWW

1

1 :

)(2 *
1

* TTWRTW SG −+= , (3)

where T f T Tci
* ( ,{ })=  is the current critical temperature, which is a function of T and

Tci and near CP it goes to Tci. For the system with three CPs

)/(])([ c3c2c3c1c2c1
3

c3c2c1
2

c3c2c1
* TTTTTTTTTTTTTTT ++−+++= .

The equation of CC with any number of CPs has the following form

RKW
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, (4)

where )ln(
1
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K W S

S

S X
X

X

−
+

= , WS1 is the only fitting parameter.

For the system with three CPs an equation for critical temperatures has the form

of an algebraic equation of the third degree

02)]3/([3)]3/([ S3S2ci
3

S3S2ci =++++ qWWTuWWT , (5)

where 2
S3S2S3S1 )3/(3/)2( WWWRWu −+= ,

S3HS3S1S3S2
3

S3S2 2/2/)2)(3/()3/( WWWRWWWWWq −+−= .
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The number of real solutions of the Eq.(5) depends on the determinant sign

23 quD += :

(i) if D > 0, there exists the only real root; herein WS3 > 0 corresponds to LCSP and WS3

< 0 corresponds to UCSP.

(ii) if D < 0, there are three real roots. Herein at WS3 > 0 the closed immiscibility gap is

observed above the unclosed CC with UCSP, i.e. THCP > TCDP. In Fig.2a one can see

changes of the diagrams shape with increase of absolute value of positive WH: large

domain of immiscibility (1, 2) with one UCSP transforms into the closed-loop two-

phase region located upper than the second domain of limited solubility, the CDP (3') is

formed when LCSP of the closed-loop comes into contact with UCSP of unclosed CC;

and then the closed-loop immiscibility gap (4) decreases up to shrinking into HCP (5'),

and under further increase in the WH only unclosed CC with UCSP (5, 6) is observed.

Similar phase diagrams have been experimentally obtained [8] for the mixture of 3-

butanol/2-butanol/water when the content of tret-butanol was sequentially increased.

Behaviour of this type was described under studying phase diagrams of the 2-

butanol/water solutions at elevated pressure [9].

At WS3 < 0 the reversed pattern is observed, namely: the closed-loop lies beneath

the unclosed CC with LCSP. In Fig.2b one can see changes of the shape of CCs with

three CPs when absolute but negative value of WH is increased. Herein CDP (2') is a

point of contact of UCSP of closed-loop and LCSP of the independent domain of im-

miscibility whereas HCP (4') is a point of degeneration of the closed-loop. In this case

TCDP > THCP. Finally, at large negative values of WH a single unclosed CC with LCSP

(5) is observed. In the literature we could not find any experimental data for transitions

of this type.
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(iii) if D = 0 (u3 = -q2 ≠ 0) two CPs are coalesced forming either HCP or CDP at the

temperature uWWT −±−= )3/( S3S2D .

(iv) if D = 0 (u = q = 0), then three CPs are coalesced, and the corresponding tempera-

ture is indicated as a critical triple point (CTP) 3/)()3/( c3c2c1S3S2CTP TTTWWT ++=−= .

The possibility of this case is evident from the analysis carried out (see Fig.2c).

Coefficients and roots of the Eq.(5) are related to each other as shown below:


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where constTTTT cncc =+⋅⋅⋅++= −−−− 11
2

1
1

1
0 . It follows from Eqs.(5) and (4) that critical

temperatures Tci and conjugate temperatures T', T'' and T''' (temperatures at the same

concentration) have to be associated to each other


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(7)

and if the critical temperatures Tci and one of the conjugate temperatures are known, the

rest two conjugate temperatures can be calculated from Eqs.(7).

A program (SYSNEW) for numeric calculations of fitting parameters of the CC

equation using experimental data has been created. The program has been described

elsewhere in detail [20]. Here we just point out the features of the program: (a) the mul-

tidimensional optimisation has been realised, (b) the experimental data on liquid-liquid

equilibrium taken from literature can be represented in the universal concentration co-

ordinates (mole fractions, weight fractions, volume fractions, density, refractive index,

and so on), (c) sequential (xj, Tj) or conjugate (xj', xj'', Ti) experimental data can be used,
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(d) any fitting parameter can be either frozen or calculated by least-mean square or it-

eration method, (e) to estimate quickly and illustratively the physical meaning of fitting

parameters calculated, the interpolating functions are graphically compared with the ex-

perimental data.

RESULTS AND DISCUSSIONS

Using Eq.(7) and the data of Dolgolenko [11] with the available experimental

points in the range of low temperatures for three conjugate temperatures, the position of

a critical triple point was calculated: TCTP = 306.14 0K. Further, assuming the position of

this point unchanged under pressure variations, the upper critical solution temperatures

in the range of low temperatures were evaluated for the Morioyshi et al. data [9] at

higher pressures. These results are shown in Table 1 (column 3).

Calculating the symmetrized concentration parameters (xc, X0) we assume that

critical concentrations for UCSP and LCSP are equal to each other. The basis for this as-

sumption has been discussed in [15,16]. We obtained that parameter X0 was zero for all

pressures while the critical concentrations xc were slightly changed with pressure (Table

1, column 7). However, within the experimental errors these changes are negligible and

the values could be considered as constant.

The energy parameters (Tci, B) were calculated independently for symmetrized

CCs under fixed exponent σ = 0.325 of the scaling law of WS1 variation: στ −= 01 BWS ,

where 0
*

0 /)( TTT −=τ . The accuracy of the data for the studied systems was not suffi-

cient to evaluate the value of σ. In our calculations we used the value of σ previously

obtained [21] using the more precise data for the methanol/heptane system [22].

The position of HCP, CDP, and CTP can be evaluated from the condition D = 0.
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The temperatures of HCP and CDP (TD1 and TD2) associate with critical temperatures

Tci and the temperature of CTP, TCTP:





++=
++=+

3/)(

3/)(2/)(

31322121

32121

ccccccDD

cccDD

TTTTTTTT

TTTTT
(8)

The calculated values of TD1 and TD2 are presented in Table 1 (columns 7 and 8) for dif-

ferent pressures. It is clear that TD1 and TD2 are slightly changed with pressure. These

data were used to calculate the coexistence curves and critical parameters for the cases

of 1 atm and 100 atm pressure because, as it is shown in Fig.2a (curves 1,2,3), the sys-

tem has the only CP and two overlapping immiscibility gaps.

The calculation of limiting temperatures for HCP and CDP was based on the

following considerations. In the case of HCP the critical temperatures of the closed-loop

CC become equal, and in the case of CDP one critical temperature of an unclosed CC

coincides with one of the critical point of a closed-loop. In both cases the equations to

determine these characteristic critical temperatures are identical





=+

=+
−−− 1

0
112

32

TTT

TTT

cD

CTPDc
, (9)

here TD is either THCP or TCDP, Tc is one of the rest critical points. Using Eq.(9) we cal-

culated the temperatures for both HCP and CDP and the correspondent UCSP: 1) THCP =

339.84 K and Tc = 238.74 K (pHCP = 845 atm), this case corresponds to the Fig.2a (5’,5);

2) TCDP = 268.27 K and Tc = 381.87 K (pCDP = 100 atm), this case corresponds to the

Fig.2a (3’,3). The values are in good agreement with the literature data. The position of

CDP and correspondent UCSP are coincided with those for characteristic points ob-

tained for the data of Moriyoshi et al. at p = 100 atm. This pressure is very close to the

value of CDP pc = 10.07 MPa obtained in [10] for the 2-butanol/water system.
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Finally, the possibility of quantitative description of the phase diagrams with

three critical points at different pressures is shown in Fig.3. The calculated parameters

of CCs are presented in Table 1.

The obtained critical temperatures allowed us to calculate the so-called compen-

sation temperature T0, which appears to be constant with good precision for all pressures

(see Table 1, column 9).

A critical line connecting the critical solution points as miscibility limits can be

obtained from the results presented in Table 1, and shown as the (p,T)-projection in

Fig.4. This plot includes the low-temperature part located below the CDP, where the

measurements of the critical point and the solubility temperatures are experimentally

difficult. Parts 1 and 3 of the critical point line can be described by the formulae [23]

)()( 2
2/1

1 DDDci pplpplTT −+−±=− , (10)

where Tci is the single critical temperature at pressure p, “+“ applies for Tci > TD, li's are

the fitted coefficients, and D indicates either CDP or HCP. Calculated fitting parameters

are l1 = 1.32±0.03 and l2 = 0.004±0.001. The intermediate part 2 is significantly affected

by both HCP and CDP. We used the sum of the Eq.(10) with different signs to describe

the critical line between HCP and CDP:

)]()[(])()[(2/)( 2
2/12/1

1 HCPCDPHCPCDPHCPCDPci pppplpppplTTT −+−+−−−++= (11)

Here pCDP = 100 atm, pHCP = 845 atm. Interestingly, that in both equations (10) and (11)

the same fitting parameters were used for approximation of the whole critical line.

The value of critical amplitude B for different pressures varies within the ex-

perimental errors that are shown in Table 1, column 5. It means that we cannot recognise

a difference in the critical amplitudes B for these data, and we have to take average B,



12

which is the same for all pressures, indicating that there are no changes in the internal

degrees of freedom. This calculated average B = 22 ± 7 was used for the unique de-

scription of the analysed data. To clarify the variations of the CC's shape with pressure

the universal scale, the reduced temperature of phase separation, T/T*, versus sym-

metrized mole fraction, xs, can be used. The reduced CCs with three CPs were theoreti-

cally calculated under the constant value of the critical amplitude B for the same pres-

sures indicated in Fig.3. These results are presented in Fig.5. It should be emphasised

that even if the whole dependence is described by the same equation with equal critical

amplitude B for all pressures, the curve does contain two different lines corresponding

to the closed-loop region (solid line) and unclosed immiscibility gap (shot dotted line).

At p = 1 atm (Fig.5a) both lines are connected below the point T/T* = 1, i.e. there are no

closed-loop gaps. One can compare this curve with Fig.3a. Fig.5b shows the case of

CDP (see Fig.3b): the closed-loop region (solid line) is maximal. With increasing the

pressure (compare Fig.5c and d with Fig.3c and d, respectively) the closed-loop regions

(solid lines) became more and more narrow shrinking into the point when the HCP is

reached. For all pressures reverse point (A) corresponds to the same temperature THCP =

339.84 K, but different concentrations and different T/T*.

CONCLUSION

The data of Moriyoshi et al. [9] for the 2-butanol/water system at different pres-

sure has been analysed as a system with three critical points. The experimental liquid-

liquid equilibrium data of different authors provide a basis for considerations of this

sort. We used the general properties of conjugate temperatures of CCs with several CPs

to calculate the low-temperature part of the whole CC. This is especially important in
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connection with the difficulties of experimental measurements in this region. Moreover,

a quantitative picture of complex topology phase diagrams of this type has allowed us to

understand fine features of solubility curves with several CPs. The comparison of CCs

for the system with three CPs on the universal concentration and energy scale can be re-

garded as a development of the principle of corresponding states. The generalized ap-

proach allows us to include the systems of different physico-chemical nature and ternary

mixtures in the unique scheme of quantitative description of solubility phase diagrams.

The program used for the CCs calculation is a basis for creation a computer databases

on the liquid-liquid equilibrium which replenishment is being continued.

List of symbols

B critical amplitude of the CC

R gas constant

T absolute temperature

T* current critical temperature

Tci single critical temperature

T0 enthalpy-entropy compensation temperature

WG = WH - T WS, general interaction energy parameter

x mole fraction (mol.fr.) of component A (solvent)

X = x/(1-x), mole ratio of initial components

xc critical mol.fr. of component A

Xc = xc/(1-xc), mole ratio of initial components

x0 limit mol.fr. of isotropic solution

X0 = x0 /(1-x0)

xs symmetrized mol.fr. of component A

Xs = xs/(1-xs)

σ critical exponent of the scaling law of WS1 variation

τo general reduced temperature.

τi = (T-Tci)/Tci, reduced temperature
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Table 1. Critical parameters of the 2-butanol/water system under different pressure.

Pressure, atm Tc1/K Tc2/K Tc3/K B xc TD1/K TD2/K T0/K

1 388.0 -- -- 19 ± 9 0.124 268.27 345.0 --

100 381.6 268.27 268.27 21 ± 7 0.124 268.27 343.6 --

200 378.4 288.1 251.8 21 ± 9 0.124 268.4 343.8 99.2

300 373.2 297.0 248.3 23 ± 9 0.125 269.9 342.5 99.3

400 368.8 303.0 246.2 24 ± 5 0.125 270.6 341.4 99.3

500 364.6 309.2 244.5 25 ± 5 0.125 271.4 340.7 99.3

600 360.6 315.3 242.6 25 ± 7 0.125 271.8 340.5 99.3

700 356.5 322.4 240.0 23 ± 5 0.125 271.7 340.8 99.3

800 349.6 330.5 238.9 18 ± 5 0.126 272.1 340.5 99.3
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FIGURE CAPTIONS

Fig.1. Solubility curves for the 2-butanol/water system at atmospheric pressure: the

comparison of the data of Dolgolenko [11] and Moriyoshi et al. [9]. The calculated hy-

percritical (HCP), critical triple (CTP), and critical double (CDP) points are indicated in

Figure.

Fig.2. Schematic representation of solubility phase diagrams with three CPs:

a) THCP>TCDP, transition from UCSP (1) to UCSP (6) sequentially occurs over CDP (3’)

and HCP (5’): WS3 = 10-4R, WS2 = -0.09282R, WS1 = 26.3768; (1) WH = 2876.1R, (2)

WH = 2866.1R, (3) WH = 2863.796R, (4) WH = 2860.1R, (5) WH = 2848.419R, (6) WH

= 2836.1R.

b) THCP<TCDP, transition from LCSP (1) to LCSP (5) sequentially occurs over CDP (2’)

and HCP (4’): WS3 = -10-4R, WS2 = 0.09R, WS1 = -28.7; (1) WH = -2590R, (2) WH = -

2603.68R, (3) WH = -2610R, (4) WH = -2616.325R, (5) WH = -2630.1R.

c) The coincidence of three CPs: WS3 = 10-4R, WS2 = -0.09R; (1) WS1 = 24.7, WH =

2610R; (2) WS1 = 24.97, WH = 2691R; (3,3') WS1 = 25.0, WH = 2700R. (3') is the criti-

cal triple point (CTP).

Fig.3. Solubility curves for the 2-butanol/water system at different pressures: a) 1 atm,

b) 100 atm, c) 200 atm, d) 800 atm, where x and xs are mole fraction and symmetrized

mole fraction for 2-butanol, respectively. Points are the experimental data of (ο) Dolgo-

lenko [11] and (• ) Moriyoshi et al. [9]. Lines are the initial (solid) and symmetrized

(shot dotted) coexistence curves calculated using Eqs.(1)-(4) with the parameters pre-

sented in Table 1. The calculated hypercritical (HCP), critical triple (CTP), and critical

double (CDP) points are indicated in Figure.

Fig.4. Pressure dependence of the critical solution temperatures. The solid circles corre-
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spond to the experimentally reached domain, the open circles are located in the low-

temperature part of solubility curves. The calculated hypercritical (HCP), critical double

(CDP) points (⊗ ), and correspondent UCSPs (×) are indicated. Lines are calculated by

Eqs.(10) and (11) with the same fitting parameters l1 and l2 (see in the text).

Fig.5. Comparison of symmetrized coexistence curves of the 2-butanol/water system at

different pressures in reduced scale: the solid line corresponds to the closed-loop, the

shot dotted line corresponds to the unclosed immiscibility gap, both lines are calculated

using Eq.(4) with the parameters: B = 22 ± 7, σ = 0.325,

a) 1 atm: TCDP = 268.27 K, THCP = 339.84 K, Tc = 388.0 K,

b) 100 atm: TCDP = 268.27 K, THCP = 339.84 K, Tc = 381.55 K,

c) 200 atm: Tc1 = 378.44 K, Tc2 = 288.06 K, Tc3 = 251.82 K,

d) 800 atm: Tc1 = 349.55 K, Tc2 = 330.45 K, Tc3 = 238.86 K.
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